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Letters to the Editor 

Cylindrical probe in a flowing plasma 

Abstract. The theory developed by Andrews and Swift-Hook for a spherical 
probe in a flowing plasma can be applied to a cylindrical probe. As with a 
sphere, a stagnation point forms downstream and there is a small change 
in floating potential and in ion saturation current. These changes are smaller 
than for a sphere and opposite in sign; it might just be possible to obtain some 
indication of the flow velocity from them. Apart from this, existing low 
pressure, subsonic probe theories are substantially correct numerically. 

The  theory developed for a spherical probe in a flowing plasma (Andrews and 
Swift-Hook 1971) can readily be applied to a cylindrical probe. As with a sphere the 
ion flow can be described (subject to the same assumptions) by the general ion flow 
equation 

c is the ion speed of sound (KT,/mi)1'2, with respect to which all velocities can con- 
viently be normalized. As with the sphere, we divide space into a free stream region 
(with the flow becoming uniform at infinity, velocity U )  and a pre-sheath around the 
probe (with more or less radial Aow); we join the solutions at some convenient radius. 

The  method of solution in cylindrical polars is very similar to that in spherical 
polars; the velocity components in the free stream are 

c2v  . zti = vi 9 v(+?J:). 

= - ( B ~ / ~ )  + U cose(i + 
cog = - UsinO(1 - B l / r 2 )  

and in the region around the probe 

= coo(y) - u case C ~ R J ~ )  
cog = Usin0 ClR1(r) / r .  

co0(r) is the radially symmetric ion flow velocity (normalized with respect to c) which 
satisfies the zero-order equation 

Thus, r = - coo-1 exp(-+( 1 - coo2)) and this is plotted in figure 1. Rl(r)  is the solution 
of the first-order perturbation equation 

~ ' ( 1  -coo2)Rl"(~)+~(1-coo2)-1R1'-R1 = 0 

with Rl(l) = 1 and Rl'(l) = 0;  it has been found numerically and is also plotted, 
along with its derivative, in figure 1. The  constants Bo, B1 and C1 are determined by 
joining the solutions at some convenient radius s; the results are not very sensitive to 
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Figure 1. Radial variation of ion flow speed v0(y) for the static, symmetric case, 
and velocity perturbation functions RI($+) and RI'(?). 

the choice of s. 
Bo = - s v ~ ( s )  

- S'(R,(S) -sR,'(s)) 
B, = 

R,(s) + S R ' ( S )  

- 2s c, = 
R,(s) +sR,'(s)' 

The normalized ion flow velocity v,  the electrostatic potential V and the plasma 
density n are then simply given as 

U = (ur2+oe2>1'2 

./ao = exp (eV/kT,). 

The ion velocity flow pattern calculated for a free-stream velocity one tenth of the 
ion speed of sound is shown in figure 2 ; figure 3 shows the variation of v,  V and n on 
the axis of symmetry for three tenths the ion speed of sound. 

These results look very similar to the corresponding ones for a sphere given by 
Andrews and Swift-Hook (1971). There is a stagnation point behind the probe where 
the inwards flow to the probe just cancels the free-stream flow. The  slower the 
free-stream flow the further out the stagnation point ; it is found to be about U 
probe radii behind the centre of the probe. This is further away than the (e-112/U)1/2 
which is found to be the approximate distance for the sphere. 

The ion current density is nev and the total ion current to the probe per unit 
length is obtained simply by integrating around the probe. The fractional increase 
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Figure 2. Ion flow around a cylindrical probe, U = 0.1. 

Figure 3. Normalized velocity, voltage and density profiles on axis of symmetry. 
U = 0.3. 

in ion current due to the flow velocity U (compared with the static case) is found to be 

where X = U2CI2/4 and I ,  is the modified Bessel function. F( U )  is plotted in figure 4; 
it is comparable to the corresponding function for a sphere but opposite in sign. For 
small U, F( U )  N 0.115 U2 compared with the corresponding change -0.25 U2 for a 
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sphere. The fractional change in the floating potential is then found to be 

A v* 
v, HI+ 1n(W/27%)1 

- In{ 1 + F( U)} 
-= 

0.30 F( U )  
1 + 0 4 5  In W 

N 

where W is the atomic weight of the ions’ species. As with the sphere, both these 
changes are small. They are given in figure 4. 
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Figure 4. Fractional change in saturation ion current and in floating potential 
with plasma flow velocity. 

It therefore appears that existing low pressure cylindrical probe theories are 
substantially correct numerically when there is plasma flow. The main differences 
are that a stagnation point forms downstream and there is a change in floating potential 
(and in saturated ion current). These changes are small; they are similar to those for 
a sphere but are opposite in sign. 
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